skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akundi, Sahithi Srijana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maintaining operational efficiency while ensuring safety is a longstanding challenge in industrial process control, particularly in high-risk environments. This paper presents a novel Dynamic Risk-Informed Explicit Model Predictive Control (R-eMPC) framework that integrates safety and operational objectives using probabilistic constraints and real-time risk assessments. Unlike traditional approaches, this framework dynamically adjusts safety thresholds based on Bayesian updates, ensuring a balanced trade-off between reliability and efficiency. The validation of this approach is illustrated through a case study on tank level control, a safety-critical process where maintaining the liquid level within predefined safety limits is paramount. The results demonstrate the frameworks capability to optimize performance while maintaining robust safety margins. By emphasizing adaptability and computational efficiency, this research provides a scalable solution for integrating safety into real-time control strategies for similar process systems. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026